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Key Contributions Deterministic Policy Gradient Primal-Dual Method (D-PGPD)

» This paper proposes deterministic-policy search for solving constrained MDPs > D-PGPD = Maximizes regularized advantage Ay! _associated with V'
C1) Zero-duality gap = Despite deterministic policies .
C2) Deterministic PG primal-dual method = Sub-linear convergence rate Trqls) = argmax, ¢ A AK;J(Sa a) — %Ha —(8)|1 (D-PGPD-P)
C3) Sample-based approximation = Sub-linear convergence rate _ 1 5
Aoy = argmingen A (Volnr) +7Ar) + 50— Ad (D-PGPD-D)
Continuous-Space Constrained MDPs » Analysis requires mild technical conditions

> Function QF (s, @) — 7pl|2 — mo(S)||? concave in 2

» We solve continuous-space constrained MDPs
> Continuous-state space S C R% and continuous-action space A C R%

> Probability transition function p(s’ | s, a) and initial-state distribution p Theorem: Sub-linear convergence of D-PGPD

» Convergence assessed via = ¢;~E {lle(m(s)) - m(s)Hz} + || Pax(Ag) — Atl|%

> Reward function r(s, a) and utility function g(s, a)

For 7 > 7o, the primal-dual iterates of D-PGPD satisfy ¢;,1 < e~ 0! dy + 3, C?

» We consider deterministic policies = a = n(s)

> More practical for real-world applications » Convergence to a neighborhood at sub-linear rate
> Crucial for safety-critical domains > Cg depends on MDP parameters
> 9, 31 depend on n = e-convergence in O(¢~ 1) iterations with = O(¢)
g Agent Corollary: Close-optimality of RD-CRL
If n = O(e*), 7 = O(€2) + 79, t = Q(e Clog®e— ), close-optimality and near-feasibility follow
s | n| g ar = m(st) Vr(7") = V() < e—moH(77)
Vg(r) > —et+roH(m*) (A max — A*) !

Environment |«

» D-PGPD requires computing value functions in closed form

> Goal = Maximize V() := E,[V](s)] ensuring Vy(r) := E,[V(s)] is sufficiently good Approximate Deterministic-Policy Search method
- ] - ) r 1
VI(s) :=Ex | Y 'r(sa) | sop=s| and Vi(s):=Er|> ~'g(st.a)|so=5 o e .
0 : =0 : i Use 7, to sample Estimate J™ (s, a) via 7ie1 < Solve (AD-PGPD-P)

>

; < Solve (AD-PGPD-E) At+1 < Solve (AD-PGPD-D)

Problem Formulation  trajectories T

» Continuous-space constrained MDP optimizing over the class of deterministic policies Il

» AD-PGPD = Approximate D-PGPD to avoid closed-form computations

V;;* = max Vir(7) s.t. Vg(r) > 0 (P-CRL) > Approximate augmented action-value function J™(s, a) := Q;T,T(s, a) + %w(s)Ta
_ : Ty gm 2 ) )
» Workhorse of constrained RL = Lagrangian method O =argming s g)~, {Hgb(s, a) 0—J%(s a) ] (AD-PGPD-E)
~ 1

Tr1(s) = argmax,c A Jy,(S; @) — (%Jrz—) ||a\1||2 (AD-PGPD-P)
L(m,A) = V() + V() & L(r,A):= V(7)) with r\(s,a):=r(s,a)+ g(s,a) 717

Apq o= argminy, cp AM(Vg(me) +7A¢) + 2—H>\ — M2 (AD-PGPD-D)
» Minimize the dual function = Upper bound of (P-CRL) ’l

% _ _ | » Extending convergence analysis requires boundedness of approximation error
Vb = \CRE D(A) - with - D(A) = "n Vi) (D-CRL) > Function Jy(s, 2) — 9|2 — mp(s)||° = Concave in 2
» The primal problem (P-CRL) and the dual problem (D-CRL) are Theorem: Sub-linear convergence of AD-PGPD
> Tractable for stochastic policies = Rich literature of methods For 7 > 19, the primal-dual iterates of AD-PGPD satisfy ®; 1 < e~ "0l + 31 C5+ Baeapprox

> Considered to be challenging for deterministic policies

o o | o | » Convergence depends on approximation error = (o depends on 1 /(7 — 7p)
P1) Deterministic policies sub-optimal in discrete constrained MDPs [Altman, Rout.2021]

P2) SearChing for deterministic pOIiCieS IS an NP-Comple’[e prOblem [DOIgOV, IJCA|2005] > Sample-based AD-PGPD = Learn approximator from trajectories T using SGD

> Basis functions, bias and approximation errors are bounded
> Non-zero probability of sampling optimal state-action pairs

» Deterministic policies are sufficient under non-atomicity Corollary: Sub-linear convergence of sample-based AD-PGPD

> Vector of value functions V(r) = [Vi(r), Vg(r)] ' For 7 > 79, the iterates of the sample-based A-PGPD satisfy

Addressing P1: Sufficiency of Deterministic Policies

> Value images V; = {V/(x) for all policies} and Vp = {V(x) | 7 € 1} B C?
- I . _ E[l¢; 4] <e BOtE[(bﬂ + b1 Cg +02| = N1 1 + € bias
Lemma: Sufficiency of deterministic policies [Feinberg, SICON2019] n=(N+1)

For a non-atomic discounted MDP with continuous spaces, the deterministic value image
Vp Is convex, and equals the value image Vr, l.e., Vp = Vr

» Convergence depends on number of samples and bias error
> Cq depends on MDP parameters
> N is the number of samples for approximation

» Continuous-space constrained RL with deterministic policies has zero duality gap

Theorem: Zero duality gap for deterministic policies

Numerical Experiments

Under non-atomicity, problem (P-CRL) has zero duality gap, i.e., VE* = VB*

» Continuous velocity-constrained robot navigation =- absolute-value rewards

Vr | > Sample-based AD-PGPD (=) vs. dual-based baseline PGDual (==)
Ve =Vp 6><1|01‘|‘| S ) |
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Reward - Episodes Utility - Episodes
Addressing P2: Regularized Lagrangian

» Continuous constrained fluid-velocity control = quadratic dynamics

» Regularized Lagrangian = Smooth optimization landscape limiting optimality loss . {
> Primal regularization = H() - 2, [H"(s)| with H™(s) := Ex [ S0 —ln(sp)[| § x10 x10

> Dual regularization = h()\) := )\? g
T T T 8
L-(m, ) = V\(7)+ EH(?T) + Eh()\) & Li(m ) = V) () + Eh()\) %
aa
» Solve the saddle-point problem A T T 1 L
_ 0 4000 8000 0 4000 8000
Ame”}\ e V() + Qh()‘) (R-CRL) Reward - Episodes Utility - Episodes
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