
Deterministic Policy Gradient Primal-Dual Methods for
Continuous-Space Constrained MDPs
S. Rozada † D. Ding ‡ A. G. Marques † A. Ribeiro ‡

† King Juan Carlos University, Madrid, Spain ‡ University of Pennsylvania, Philadelphia, PA, US

Key Contributions

▶ This paper proposes deterministic-policy search for solving constrained MDPs
C1) Zero-duality gap ⇒ Despite deterministic policies
C2) Deterministic PG primal-dual method ⇒ Sub-linear convergence rate
C3) Sample-based approximation ⇒ Sub-linear convergence rate

Continuous-Space Constrained MDPs

▶ We solve continuous-space constrained MDPs
▷ Continuous-state space S ⊆ Rds and continuous-action space A ⊆ Rda

▷ Probability transition function p(s′ | s,a) and initial-state distribution ρ

▷ Reward function r (s,a) and utility function g(s,a)

▶ We consider deterministic policies ⇒ a = π(s)
▷ More practical for real-world applications
▷ Crucial for safety-critical domains

Agent

Environment

at = π(st)rtst+1 gt

▶ Goal ⇒ Maximize Vr (π) := Eρ[Vπ
r (s)] ensuring Vg(π) := Eρ[Vπ

g (s)] is sufficiently good

Vπ
r (s) := Eπ

 ∞∑
t=0

γtr (st ,at) | s0 = s

 and Vπ
g (s) := Eπ

 ∞∑
t=0

γtg(st ,at) | s0 = s


Problem Formulation

▶ Continuous-space constrained MDP optimizing over the class of deterministic policies Π

Vπ⋆

P := max
π ∈Π

Vr (π) s.t. Vg(π) ≥ 0 (P-CRL)

▶ Workhorse of constrained RL ⇒ Lagrangian method

L(π, λ) := Vr (π) + λVg(π) ⇔ L(π, λ) := Vλ(π) with rλ(s,a) := r (s,a) + λg(s,a)

▶ Minimize the dual function ⇒ Upper bound of (P-CRL)

Vλ⋆

D := min
λ∈R+

D(λ) with D(λ) := max
π∈Π

Vλ(π) (D-CRL)

▶ The primal problem (P-CRL) and the dual problem (D-CRL) are
▷ Tractable for stochastic policies ⇒ Rich literature of methods
▷ Considered to be challenging for deterministic policies

P1) Deterministic policies sub-optimal in discrete constrained MDPs [Altman, Rout.2021]
P2) Searching for deterministic policies is an NP-complete problem [Dolgov, IJCAI2005]

Addressing P1: Sufficiency of Deterministic Policies

▶ Deterministic policies are sufficient under non-atomicity
▷ Vector of value functions V (π) = [Vr (π),Vg(π)]⊤

▷ Value images VT = {V (π) for all policies} and VD = {V (π) | π ∈ Π}

Lemma: Sufficiency of deterministic policies [Feinberg, SICON2019]
For a non-atomic discounted MDP with continuous spaces, the deterministic value image
VD is convex, and equals the value image VT , i.e., VD = VT

▶ Continuous-space constrained RL with deterministic policies has zero duality gap

Theorem: Zero duality gap for deterministic policies

Under non-atomicity, problem (P-CRL) has zero duality gap, i.e., Vπ⋆

P = Vλ⋆

D

Addressing P2: Regularized Lagrangian

▶ Regularized Lagrangian ⇒ Smooth optimization landscape limiting optimality loss
▷ Primal regularization ⇒ H(π) := Eρ[Hπ(s)] with Hπ(s) := Eπ

[∑∞
t=0 −γt∥π(st)∥2 | s

]
▷ Dual regularization ⇒ h(λ) := λ2

Lτ (π, λ) := Vλ(π) +
τ

2
H(π) +

τ

2
h(λ) ⇔ Lτ (π, λ) := Vλ,τ (π) +

τ

2
h(λ)

▶ Solve the saddle-point problem

min
λ∈Λ

max
π ∈Π

Vλ,τ (π) +
τ

2
h(λ) (R-CRL)

Deterministic Policy Gradient Primal-Dual Method (D-PGPD)

▶ D-PGPD ⇒ Maximizes regularized advantage Aπt
λt ,τ

associated with Vπt
λt ,τ

πt+1(s) = argmaxa∈A Aπt
λt ,τ

(s,a)− 1
2η

∥a − πt(s)∥2 (D-PGPD-P)

λt+1 = argminλ∈Λ λ (Vg(πt) + τλt) +
1
2η

∥λ− λt∥2 (D-PGPD-D)

▶ Analysis requires mild technical conditions
▷ Function Qπ

λ,τ (s,a)− τ0∥a − π0(s)∥2 concave in a

▶ Convergence assessed via ⇒ Φt ≈ E
[
∥PΠ⋆

τ
(πt(s))− πt(s)∥2

]
+ ∥PΛ⋆τ

(λt)− λt∥2

Theorem: Sub-linear convergence of D-PGPD

For τ > τ0, the primal-dual iterates of D-PGPD satisfy Φt+1 ≤ e−β0 t Φ1 + β1 C2
0

▶ Convergence to a neighborhood at sub-linear rate
▷ C0 depends on MDP parameters
▷ β0, β1 depend on η ⇒ ϵ-convergence in O(ϵ−1) iterations with η = O(ϵ)

Corollary: Close-optimality of RD-CRL

If η = O(ϵ4), τ = O(ϵ2) + τ0, t = Ω(ϵ−6log2ϵ−1), close-optimality and near-feasibility follow

Vr (π
⋆)− Vr (πt) ≤ ϵ−τ0H(π⋆)

Vg(πt) ≥ −ϵ+τ0H(π⋆)(λ max − λ⋆)−1

▶ D-PGPD requires computing value functions in closed form

Approximate Deterministic-Policy Search method

▶ AD-PGPD ⇒ Approximate D-PGPD to avoid closed-form computations
▷ Approximate augmented action-value function Jπ(s,a) := Qπ

λ,τ (s,a) +
1
ηπ(s)

⊤a

θt = argminθ E(s,a)∼ ν

[
∥ϕ(s,a)⊤θ − Jπt(s,a)∥2

]
(AD-PGPD-E)

πt+1(s) = argmaxa∈A J̃θt(s,a)−
(
τ

2
+

1
2η

)
∥a∥2 (AD-PGPD-P)

λt+1 = argminλ∈Λ λ(Vg(πt) + τλt) +
1
2η

∥λ− λt∥2 (AD-PGPD-D)

▶ Extending convergence analysis requires boundedness of approximation error
▷ Function J̃θ(s,a)− τ0∥a − π0(s)∥2 ⇒ Concave in a

Theorem: Sub-linear convergence of AD-PGPD

For τ > τ0, the primal-dual iterates of AD-PGPD satisfy Φt+1 ≤ e−β0tΦ1+β1C2
0+β2ϵapprox

▶ Convergence depends on approximation error ⇒ β2 depends on 1/(τ − τ0)

▶ Sample-based AD-PGPD ⇒ Learn approximator from trajectories T using SGD
▷ Basis functions, bias and approximation errors are bounded
▷ Non-zero probability of sampling optimal state-action pairs

Corollary: Sub-linear convergence of sample-based AD-PGPD
For τ > τ0, the iterates of the sample-based A-PGPD satisfy

E[Φt+1] ≤ e−β0tE[Φ1] + β1C2
0 + β2

(
C2

1
η2(N + 1)

+ ϵ bias

)

▶ Convergence depends on number of samples and bias error
▷ C1 depends on MDP parameters
▷ N is the number of samples for approximation

Numerical Experiments

▶ Continuous velocity-constrained robot navigation ⇒ absolute-value rewards
▷ Sample-based AD-PGPD ( ) vs. dual-based baseline PGDual ( )

▶ Continuous constrained fluid-velocity control ⇒ quadratic dynamics
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